Polymerase chain reaction-based detection of chromosomal imbalances on embryos: the evolution of preimplantation genetic diagnosis for chromosomal translocations

Francesco Fiorentino, Ph.D., a Georgia Kokkali, M.Sc., Anil Biricik, M.Sc., Dimitri Stavrou, M.D., Bahar Ismailoglu, B.Sc., a Rosangela De Palma, M.D., Ph.D., Lucia Arizzi, B.Sc., Gary Harton, B.Sc., Mariateresa Sessa, Ph.D., a and Kostantinos Pantos, M.D., Ph.D.

a "GENOMA," Molecular Genetics Laboratory, Rome, Italy; b Centre for Human Reproduction, Genesis Athens Hospital, Athens, Greece; and ^c Genetics & IVF Institute, Fairfax, Virginia

Objective: To develop and assess a polymerase chain reaction (PCR)-based preimplantation genetic diagnosis (PGD) approach for detection of chromosomal imbalances in embryos.

Design: A prospective study of embryos derived from chromosome translocation carriers that have undergone PGD using a novel molecular-based approach.

Setting: A reference molecular genetics laboratory specialized in the provision of transport PGD services and a private IVF clinic.

Patient(s): Twenty-seven couples carrying 12 different reciprocal translocations and 2 Robertsonian transloca-

Intervention(s): Preimplantation genetic diagnosis from chromosome translocation carriers on blastomeres biopsied from cleavage stage embryos.

Main Outcome Measure(s): Embryo diagnosis rate, pregnancy rate (PR), implantation rate, take-home-baby rate. **Result(s):** Overall, 241/251 (96.0%) embryos were successfully diagnosed for chromosome rearrangements. Preimplantation genetic screening was included in the protocol of 12 couples, involving analysis of 90 embryos, 84 (93.3%) of which were successfully diagnosed and 53 (63.1%) showed aneuploidies. Embryos suitable for transfer were identified in 24 cycles. Eighteen couples achieved a clinical pregnancy (75.0% PR/embryo transfer), with a total of 31 embryos implanted (59.6% implantation rate). Ten patients (1 triplet, 1 twin, and 8 singleton pregnancies) have delivered 13 healthy babies, and the other patients (3 twins and 5 singletons) have currently ongoing pregnancies. Conclusion(s): The PCR-based PGD protocol for translocations has the potential to overcome several inherent limitations of fluorescence in situ hybridization-based tests, providing potential improvements in terms of test performance, automation, turnaround time, sensitivity, and reliability. (Fertil Steril® 2010;94:2001-11. ©2010 by American Society for Reproductive Medicine.)

Key Words: Preimplantation genetic diagnosis, preimplantation genetic screening, Robertsonian translocation, reciprocal translocation, short tandem repeats, pregnancy outcome, aneuploidy origin, uniparental disomy, blastocyst, chromosomal abnormalities

Individuals who carry a balanced chromosomal translocation (reciprocal or Robertsonian) typically suffer no outward manifestations of the rearrangement. The translocations, however, are associated with the production of large numbers of gametes with an unbalanced genetic complement. These unbalanced gametes lead to a greater chance of

Received August 31, 2009; revised December 22, 2009; accepted December 23, 2009; published online February 19, 2010.

F.F. has nothing to disclose. G.K. has nothing to disclose. A.B. has nothing to disclose. D.S. has nothing to disclose. B.I. has nothing to disclose. R.D.P. has nothing to disclose. L.A. has nothing to disclose. G.H. has nothing to disclose. M.S. has nothing to disclose. K.P. has nothing to disclose.

Reprint requests: Francesco Fiorentino, Ph.D., "GENOMA," Molecular Genetics Laboratory, Via Po, 102 00198 Rome, Italy (FAX:+390 685 344 693; E-mail: fiorentino@laboratoriogenoma.it).

the patient being infertile or at high risk of conceiving chromosomally abnormal pregnancies that lead to recurrent spontaneous abortions or children with congenital anomalies and mental retardation (1).

Preimplantation genetic diagnosis (PGD) has been offered to carriers of balanced translocations as an alternative to prenatal diagnosis and termination of unbalanced pregnancies (2–5). Application of PGD to such couples can decrease the risk of these adverse outcomes by selecting for transfer only those embryos with a normal/ balanced chromosomal complement (3, 6, 7).

Fluorescence in situ hybridization (FISH) is the method of choice for detecting unbalanced chromosome rearrangements in PGD. A commonly used FISH strategy for detection of the abnormal segregation in reciprocal translocations involves the simultaneous use of commercially available telomeric probes in combination with centromeric probes (1, 4). Analysis of Robertsonian translocations is simpler, involving the use of locus-specific enumerator probes enabling the detection of an euploid embryos (2, 8).

Fluorescence in situ hybridization is known to have limitations, which primarily derive from errors inherent to the procedure and include signal overlap, signal splitting, and poor probe hybridization. As a result, interpretation errors due to the technical issues mentioned previously can lead to the loss of suitable (normal/balanced) embryos for transfer or the errant transfer of unbalanced embryos. Both of these mistakes are considered a misdiagnosis; however, the different types of misdiagnoses have far different outcomes. Loss of suitable normal/balanced embryos leads to less embryos available for transfer, which can impact pregnancy rates (PR), whereas errant transfer of unbalanced embryos can lead to pregnancy loss or the birth of children with congenital anomalies and mental retardation (9). Since FISH was first introduced in clinical diagnosis, improvements have been established to diminish the error rate of the technique (10-12). These improvements have increased PGD sensitivity, but certain shortcomings remain. The FISH error rates, including false negatives and false positives, have been estimated to be 7%-10% (13-15).

In this article, we present the development of a polymerase chain reaction (PCR)-based PGD approach for detection of chromosomal imbalances on embryos derived from both reciprocal and Robertsonian translocation carriers. The assay was clinically applied in 27 PGD cycles, resulting in the establishment of chromosomally balanced pregnancies in 18 couples.

MATERIALS AND METHODS Clinical Cases

The details of the 27 couples are summarized in Table 1. Briefly, the couples in this study consisted of 15 Robertsonian translocation carriers and 12 reciprocal translocation carriers. The male partners of 20 couples presented sperm parameters requiring the use of intracytoplasmic sperm injection (ICSI). Eight couples had previously undergone infertility treatment using ICSI without PGD, whereas six other couples had already had an unsuccessful translocation PGD cycle in another center. Three of the six couples who had undergone PGD previously had also included preimplantation genetic screening (PGS) during the cycle and one couple had one IVF cycle that included PGS without PGD for translocation, using a sperm sample from a donor. Finally, one patient (couple 2) was advised of a very low chance of success due to her maternal age; however, the patient decided to proceed with the cycle seeing this as her last chance at pregnancy.

Preclinical PGD Workup

Typically, the preclinical workup consisted of the following steps: confirmation of the karyotype of the partner carrying the balanced translocation by conventional cytogenetic banding and karyotyping, design and optimization of PCR primers for amplification of the short tandem repeat (STR) polymorphisms, identification of informative STR markers by testing both partners, and optimization of the multiplex PCR in single cells. The final stage of the validation of the PGD protocols involved amplification of a minimum of 50 single lymphocytes derived from both partners (25 cells from each partner), as previously described (16). This allowed evaluation of amplification efficiency and allele drop-out (ADO) rates in single cells, thus permitting a rough estimate of the efficiency of the protocol.

STR Markers Selection and Primer Design

To detect chromosome imbalances in embryos derived from reciprocal translocation carriers, STR markers that flank each breakpoint were selected along each chromosome. For Robertsonian translocations, STR markers located at any point along the chromosomes involved allows for differentiation between aneuploid embryos and normal/balanced embryos by simply enumerating peak signals. In some cases, STR markers were also included to determine

the copy number of chromosomes 13, 14, 15, 16, 18, 21, 22, X, Y. Only tetranucleotides markers were selected to achieve reduced stuttering artifacts that can confound analysis of dinucleotide and trinucleotide repeat STR markers (17). Primer sequences of these markers and their chromosomal location are shown in Tables 2 and 3 (Table 3 available online).

Informativity Testing on Individual Couples

The STR genotyping for both partners of each couple was performed to identify the most informative STR markers to be used in the clinical PGD cycles. For each couple, only fully informative heterozygous markers presenting nonshared alleles (i.e., 4 different alleles, male partner a/b and female partner c/d; or 3 different alleles, translocation carrier a/b, other partner c/c) were selected so that segregation of each allele could be clearly determined. To avoid misdiagnosis due to possible ADO occurrences, at least three fully informative STR for each chromosome were included in the PGD protocol.

IVF and Embryo Biopsy Procedure

Cleavage stage embryos were obtained using a standard IVF procedure, as previously described (18). At 62–64 hours after insemination, embryos with ≥ 6 cells and $\leq 50\%$ fragmentation were placed into 20 μL of G-MOPS medium (Vitrolife, Goteborg, Sweden) under mineral oil and subjected to biopsy after zona ablation using a noncontact laser (ZILOS-tk; Hamilton Thorne Biosciences, Beverley, MA). One blastomere from each embryo was removed with macromanipulation and placed immediately into sterile 0.2-mL PCR tubes containing 5 μL of alkaline lysis buffer (200 mM KOH, 50 mM dithiothreitol [DTT]).

Cell Lysis and Multiplex PCR

Before proceeding to multiplex PCR, blastomeres were lysed by incubation at 65°C for 10 minutes, followed by neutralization with 5 μL of neutralization buffer (900 mmol/L Tris-HCl, 300 mmol/L KCl, 200 mmol/L HCl). A heminested PCR protocol was used to coamplify all the selected informative STR markers. The first round multiplex PCR was performed with "outer" primers, followed by separate second round PCR reactions for each locus with one of the same outer primers combined with a unique "inner" primer that was labeled with a fluorescent tag (Tables 2 and 3; Table 3 available online). The PCR reactions were performed as previously described (16). Fluorescent PCR products were then analyzed by 30 minutes of capillary electrophoresis on an automatic DNA sequencer, ABI Prism 3100 (Applied Biosystems, Rome, Italy).

Classification of the Results

Embryos were diagnosed as "normal/balanced" if PCR results clearly indicated two signals (peaks) for each chromosome tested. Embryos were diagnosed as "unbalanced" if the PCR results showed a clear and consistent deviation from the "normal/balanced" signal pattern, such as (partial or full) trisomies (three peaks), (partial or full) monosomies (one peak), and nullisomies (no PCR signals) (Fig. 1). The presence of one signal for each chromosome tested was classified as haploid. An "inconclusive" diagnosis was assigned for those embryos where the signal pattern was not a clear-cut normal result.

Confirmation of PGD Results

After successful embryo transfer, unbalanced or morphologically incompetent embryos were collected in individual tubes and reanalyzed to confirm the PGD results. In cases in which pregnancies were achieved, patients were advised to undergo conventional prenatal diagnosis to confirm the karyotype of the fetus.

Clinical Data and Definitions

The number of fertilized (two pronuclei [2PN]) oocytes and the number of biopsied embryos were calculated on the basis of the total number of mature injected oocytes. For the outcome of the pregnancies (19), according to The International Committee Monitoring Assisted Reproductive Technologies, a clinical pregnancy is "evidence of pregnancy by clinical or ultrasound

Patient characteristics.

Couple	Translocation	Maternal age (y)	Sperm abnormality	No. of years infertile	Previous ICSI cycles w/o PGD	Previous PGD cycles	Previous PGS
1	45,XY, t(13;14)(q10;q10)	36.3	OAT	8	0	0	0
2	45,XX, t(13;14)(q10;q10)	45.0	OAT	6	3	0	0
3	45,XY, t(13;14)(q10;q10)	39.0	AT	3	0	0	0
4	45,XY, t(13;14)(q10;q10)	41.4	OA	2	1	0 ^a	1
5	45,XY, t(13;14)(q10;q10)	41.9	OAT	6	0	2	0
6	45,XX, t(13;14)(q10;q10)	39.1	OA	5	0	2	0
7	45,XY, t(13;14)(q10;q10)	33.4	OA	2	0	0	0
8	45,XY, t(13;14)(q10;q10)	41.2	OAT	4	2	0	0
9	45,XX, t (13;14)(q10;q10)	32.4	None	3	0	0	0
10	45,XX, t(13;14)(q10;q10)	33.0	OAT	4	0	0	0
11	45,XY, t(13;14)(q10;q10)	36.9	OAT	5	2	0	0
12	45,XY, t(14/21)(q10;q10)	41.9	OAT	8	0	3	3
13	45,XY, t(14;21)(q10;q10)	29.7	OAT	1	0	0	0
14	45,XX, t(14;21)(q10;q10)	33.0	None	2	0	0	0
15	45,XY, t(14;21)(q10;q10)	30.8	AT	3	1	0	0
16	46,XY, t(5;19)(q31.1;q13.1)	36.2	AS	3	2	0	0
17	46,XY, t(1;12)(p36.1;q13.1)	32.9	None	5	0	0	0
18	46,XX, t(5;7)(q35;q32)	32.6	OAT	3	0	1	1
19	46,XY, t(10;13)(p13;q32)	35.2	OAT	3	2	0	0
20	46,XX, t(2;6)(p23;q22)	36.5	None	3	0	0	0
21	46,XY, t(7;11)(q21.1; p13)	40.6	OA	11	0	1	0
22	46,XX, t(3;18)(q25;q23)	34.5	None	3	0	0	0
23	46,XY, t(9;15)(q34;q13)	37.4	OAT	2	0	0	0
24	46,XX, t(5;9)(q33;q21.3)	35.9	OA	5	0	0	0
25	46,XX, t(8;22)(p11;pter)	29.0	None	3	0	0	0
26	46,XX, t(1;8)(p34;p12)	31.3	OAT	3	2	1	0
27	46,XX, t(7;18)(p15;p11.1)	32.4	None	4	0	0	0

Note: OAT = oligoasthenoteratozoospermia; AT = asthenoteratozoospermia; AS = asthenozoospermia; OA = oligoasthenozoospermia; ICSI = intracytoplasmic sperm injection; PGD = preimplantation genetic diagnosis; PGS = preimplantation genetic screening.

Fiorentino. A PCR-based PGD protocol for chromosomal translocation. Fertil Steril 2010.

parameters (ultrasound visualization of a gestational sac—thus with and without fetal heart beat)." The implantation rate was calculated as the number of embryos (with and without fetal heart beat) implanted over the total number of embryos transferred.

RESULTS Preclinical Workup

In total, 27 couples were included in the preclinical workup; in each case an informative set of STR markers was available, therefore all couples were considered suitable for the PGD procedure. The number of markers included in the PGD protocol varied from 8 (in PGD cases for Robertsonian translocation) to 30 (in PGD cases for reciprocal translocation with PGS STR markers used for an euploidy detection), 15.3 ± 6.0 on average. A total of 434 single lymphocytes were individually tested. A positive amplification signal was obtained in 409/434 (94.2%) cells. Amplification rates were generally high for all loci tested, ranging from 88.9%–100 %. The ADO rates varied among the different loci investigated, ranging from 0–6.8%, with an average ADO rate of 2.4%. None of the 540 blank controls used for each locus-specific trial showed amplification.

Clinical PGD Cycles and Follow-up Analysis

Twenty-seven cycles of PGD were carried out for 27 couples carrying 12 different reciprocal translocations and 2 different Robertso-

nian translocations (Table 4). Eight cycles (for couples 3, 4, 6, 15, 19, 23, 26, and 27) involved freezing of embryos at the 2PN stage for collection due to low response to ovarian stimulation.

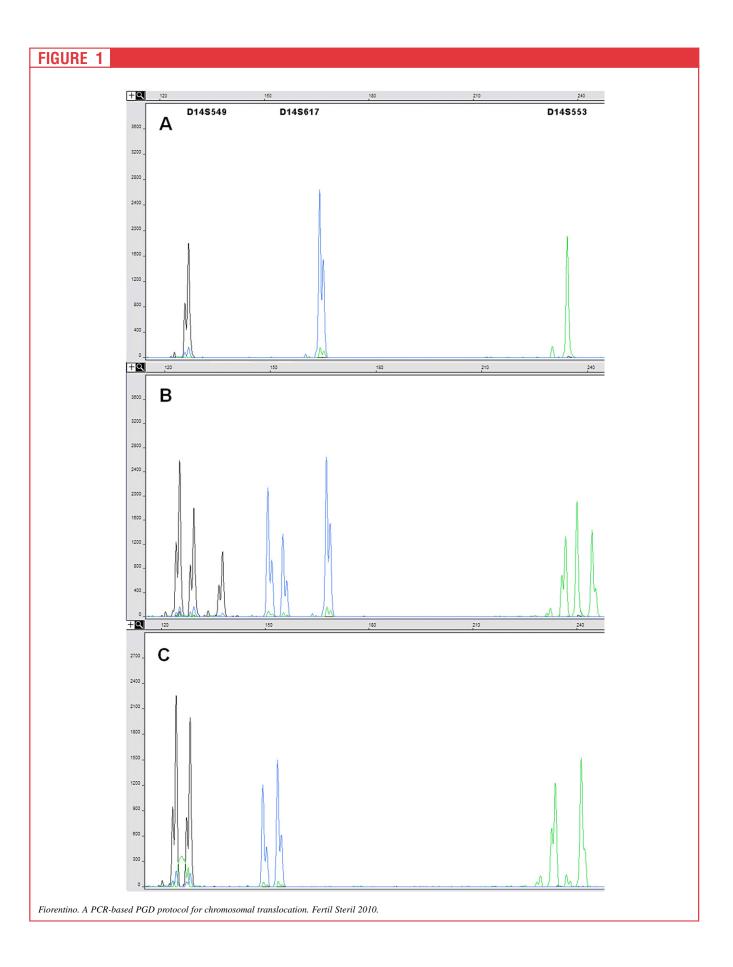
A total of 451 oocytes were collected (range 7–35 oocytes), 351 (77.8%) of them were mature metaphase II stage, 284 (80.9%) fertilized normally (range 5–23) resulting in 251 embryos (mean number 9.3 ± 3.6 per cycle; range 4–19), which were biopsied on day 3. The PCR was successful in 263 of 276 blastomeres (95.3%). Amplification failed for all the markers tested in 13 blastomeres. The efficiency of amplification of the individual STR markers on blastomeres ranged from 84.6%–100%, with an overall amplification rate of 95.0%. The ADO rates varied between the different markers investigated, ranging from 0–8.3%, with an average ADO rate of 2.6%. No contamination was detected in 251 blank controls collected during the biopsy procedure or in the blanks from the PCR reagents.

A reliable genotype (i.e., a profile with PCR results obtained from at least 2 STR markers on either side of the translocation breakpoints, for reciprocal translocation, or at least 2 STR markers for each chromosome, for Robertsonian translocation) was achieved in 263/263 (100%) of the blastomeres with positive PCR results. Overall, 241 (96.0%) embryos were successfully diagnosed. No diagnosis was obtained for 10 embryos, because of a total amplification failure of all markers tested.

Preimplantation genetic screening was included in the PGD protocol of 12 couples; for eight of them (couples 2–6, 8, 12, 21) PGS

a No PGD for translocation was performed because a sperm sample from a donor was used for ICSI.

Oligonucleotide primer sequences for amplification of STR markers used for detection of chromosomal imbalances on embryos derived from Robertsonian translocation carriers.


Chromosome	STR markers	Chromosomal band	Outer primers (5' to 3')	Inner primers (5' to 3')	PCR product size	Dye label
13	D13S634	q21.33	F: 5'-CTTCAGATAGGCAGATTCAATAGGA-3'	^a R: 5'-CCAATTCCCCTATTTAGTCATCTGT-3'	248	TAMRA
			R: 5'-CAGTTTGCAGACTATTGTGAGAGTT-3'			
	D13S258	q21.33	F: 5'-TTTTACCAGGAGGAGAGGACTA-3'	F: 5'-GGGACTACCTATGCACACAAAGT-3' ^a	172	FAM
	D13S256	~14.0	R: 5'-AATGGGATGAGAGGAAGACAG-3' F: 5'-TGGTGAAACCTGTGAGGCAG-3'	F. F. CTCCCCAACAACACCAAAACT 2/2	OCE	TAMRA
	D135256	q14.3	R: 5'-GGCCACAGAGGAAGCACATA-3'	F: 5'-CTGGGCAACAAGAGCAAAACT-3' ^a	265	TAMRA
	D13S240	q13.3	F: 5'-GTCCATTCTTTAACATGTACGCA-3'	F: 5'-CCATTCCCCATCTTTATTGACT-3'a	244	FAM
	D133240	410.0	R: 5'-AACAGAGCAAGACTCCATCTCA-3'	1.3-COATTOCCOATCTTTATTGACT-3	244	I AIVI
	D13S217	q12.3	F: 5'-GGATGTGGAGGAGAGTTCATTT-3'	F: 5'-TCTGACCCATCTAACGCCTATC-3'a	128	FAM
	DIOCETI	4.2.0	R: 5'-AGCCCAAAAAGACAGACAGAAA-3'	1.0 1010/1000/1101/1100001/1100	120	17441
	D13S243	q12.2	F: 5'-GTAATGCCTCAACCATGAATTC-3'	^a R: 5'-GATTGTGCCACTGTACTTCTGC-3'	160	HEX
		4	R: 5'-CAGTTAAATCCAGGAGGTGGAG-3'			
	D13S252	q12.2	F: 5'-TTTCTGCCCCCTAGGTGAGTAT-3'	^a R: 5'-GGACCTTGTGATCGTGTGAGTT-3'	206	HEX
		·	R: 5'-GCTTCTCAGCTTGCAGATGGTA-3'			
	D13S251	q31.1	F: 5'-AGCAGGAACAATGTTTGTTGGT-3'	F: 5'-GATGTTCCAGCTAATGCCATTAG-3'a	231	FAM
			R: 5'-TGCCATAATTGCATATTGCAGT-3'			
	D13S631	q32.1	F: 5'-CAAGATCACACCATTCCACTCC-3'	F: 5'-GGCAACAAGAGCAAAACTCTGT-3' ^a	218	HEX
			R: 5'-GCAGTTTCTTAGCCCTCACCAT-3'			
	D13S1823	q32.1	F: 5'-GCCTTGTGATCGTGTGAGTTAA-3'	^a R: 5'-ACCCAGAATTGGAAAGAACTGT-3'	186	HEX
			R: 5'-TCTCCCCTGAATGCTACAAATC-3'			
	D13S892	q32.1	F: 5'-TCAACTCAACCATTCCATTTCTAG-3'	F: 5'-AATACTTGTGCATTTGAACAGAGG-3' ^a	202	FAM
			R: 5'-CAAGTCATGTGTTTGTAATCTTGG-3'			
	D13S797	q33.2	F: 5'-CTGGCATCTGTATTAGGGTTCTC-3'	F: 5'-TCCAGACAGATAGAACCAATAGGA-3' ^a	154	HEX
			R: 5'-CAGTCTCTATAATCACGAGCCAAT-3'			
	D13S763	q33.2	F: 5'-CAATGAGCCGTGATCATGCTAC-3'	F: 5'-GCATGGGTGACAGAGTGAGATT-3' ^a	206	FAM
			R: 5'-ATCCATGTCAAAACCTCTTGGC-3'	2		
	G15773	q33.2	F: 5'-GGTAGACATTTGCCACTTGGTT-3'	^a R: 5'-CACGAGCCAATTCTCCTAACAA-3'	192	HEX
	D400040	20.0	R: 5'-CACTACTCCATGCCAGGATCTC-3'	F F/ AAOTTAAATOTOOATOAATAAA 0/8	004	TALADA
	D13S248	q33.3	F: 5'-GCTATTGACAATAGCCAAATAT-3'	F: 5'-AACTTAAATGTCCATCAATAAA-3' ^a	201	TAMRA
	D100706	~22.2	R: 5'-TACTTACCATAATGTCCTCAAG-3'	an el toacacatatecacecateacte al	155	LIEV
	D13S796	q33.3	F: 5'-TGAATCTCATCTCCCTGTTTGGT-3' R: 5'-ATTTGAGGTTGCTTGAATCCATG-3'	^a R: 5'-TCACAGATATGGAGGGATGACTG-3'	155	HEX
	D13S783	q33.3	F: 5'-CAGGTATCTAATGTGCTCTTTAAA-3'	F: 5'-CACCCAATTTTTTGTATGTTTAC-3'a	175	FAM
	D133763	433.3	R: 5'-AAATTCATTCTCTCTCTGTCTCC-3'	F. 5 -CACCCAATTTTTGTATGTTTAC-5	175	FAIVI
14	D14S122	q11.2	F: 5'-CCGAATAAATTGGAAAGTTGCG-3'	F: 5'-GTTGCGTTCATGTACCACTGC-3'a	215	FAM
14	D140122	411.2	R: 5'-CCTGGGTGAGACTCCATCTCA-3'	1.5-411404110414140040140-5	210	I AIVI
	D14S608	q12	F: 5'-CTTTCGTGGTTTTTGTCTTTCAAG-3'	F: 5'-ACGTGGTACAGGTAGATAAATGGA-3'a	175	FAM
	21.0000	4.=	R: 5'-GGATCTCCTTCTTTTATGGATGA-3'			.,
	D14S121	q13.1	F: 5'-GGATTGAATGTCTTTCCTGGT-3'	F: 5'-CAAGATCCCCTTTCCCATATA-3'a	162	HEX
			R: 5'-TGGTATGTTCCTAGCATTTGC-3'			
	D14S551	q13.1	F: 5'-TCAGCCATGATTGTGCCACT-3'	F: 5'-CTGGGCAACAGAGCAAGATG-3'a	198	HEX
		•	R: 5'-CATGTGGTCCCAGCTCACAT-3'			
	D14S125	q23.3	F: 5'-AGACATACAATTCGTGAGGAACAGA-3'	F: 5'-GCTCTTAACCTCTCATCATATCACA-3'a	180	TAMRA
		•	R: 5'-GCGTGTTCCACTCTTTAATTACAGT-3'			

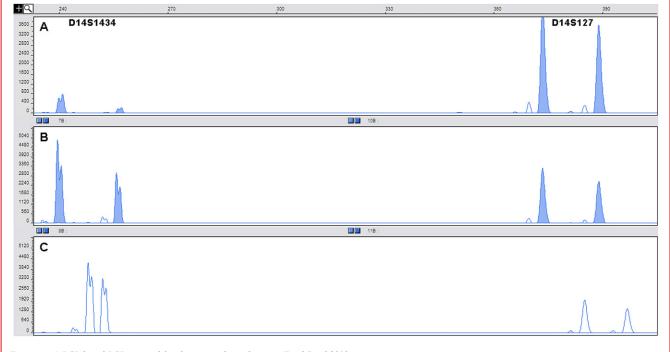
Continued.

Chromosome	STR markers	Chromosomal band	Outer primers (5' to 3')	Inner primers (5' to 3')	PCR product size	Dye label
	D14S549	q24.1	F: 5'-AGGCACCCCATATAAGCACTATTTA-3' R: 5'-GGTTTGAACATGTAATCACACTTGG-3'	F: 5'-GCACTCAGAGAATCAGAAAAACTGA-3' ^a	121	TAMRA
	D14S120	q24.3	F: 5'-TCACTACAAACTCCACCTCCCAG-3' R: 5'-GCTATTCCTTCTGCCATCAAATC-3'	F: 5'-ACTATATTGGCATGGCTGGTCTC-3' ^a	275	HEX
	D14S127	q31.2	F: 5'-GATGCAAAATACGTGGCTTCTT-3' R: 5'-CATCCACATGGTCTTGGTTCTAG-3'	F: 5'-GAGGTGAAAGAAGAACCAACAAGT-3' ^a	396	FAM
	D14S126	q31.3	F: 5'-GTTTCCTTGGACTATTTCCCTGT-3' R: 5'-CATGGAAAACCTCCTCATATAGC-3'	F: 5'-GGTTGGTTGTTACACAGCAAAG-3' ^a	151	HEX
	D14S128	q31.3	F: 5'-GTTGAGGTTATGCATGTGTGAGTG-3' R: 5'-CCCCAAAACTCTCAGAAGATACTTT-3'	F: 5'-GGCTTTTATGGGAAATCTCTGTACT-3' ^a	331	HEX
	D14S617	q32.12	F: 5'-AAGTTGTTAGTAATCTCCGCCTCC-3' R: 5'-CAGTTTAGGCAACAGAACAAGATCT-3'	F: 5'-GGAGAAATTAAGTTTTAGGTGGCC-3' ^a	152	FAM
	D14S553	q32.13	F: 5'-ACCACTGCCTGCTATTTACAAA-3' R: 5'-GCCTGTGTGACAGAGTAAGACC-3'	F: 5'-GGGAGTGAAAAGGCTTTTCTAG-3' ^a	248	HEX
	D14S1434	q32.13	F: 5'-CCACCACTGGGTTCTATAGTTCTC-3' R: 5'-CATGGATTCCACATTAAGAGCTCT-3'	F: 5'-TCAGATTCAGACTGAATCACACCA-3' ^a	252	FAM
21	D21S11	q21.1	F: 5'-GAGTCAATTCCCCAAGTGAATT-3' R: 5'-GAAGGGAGAAACACTGTAAGGTT-3'	^a R: 5'-TGTTGTATTAGTCAATGTTCTCCAG-3'	240	HEX
	D21S1414	q21.1	F: 5'-AGAAGGAGAAACACTGTAAGGT-3' R: 5'-CCAAGTGAATTGCCTTCTATCTA-3'	F: 5'-TCCAGAGACAGACTAATAGGAGGT-3' ^a	190	FAM
	D21S1437	q21.1	F: 5'-ACTGATGGACATTTAGGTTGATTC-3' R: 5'-TTCTCTACATATTTACTGCCAACAC-3'	F: 5'-GAATAGTGCTGCAATGAACATACAT-3'a	150	HEX
	D21S1244	q21.2	F: 5'-TGTCAAAGGAGTATGTCCCCAT-3' R: 5'-TAGTGAGGAAGAATAGGGATTATCC-3'	F: 5'-CTAGTACCACAGAATTCAGTCCAAA-3' ^a	170	FAM
	D21S1409	q21.2	F: 5'-ATACAAGCGAAGGATTTGGATC-3' R: 5'-CATATGCGTGTATTTTTGCCTC-3'	^a R: 5'-GGAACATACGCTCTCTCCCTTA-3'	172	HEX
	D21S1250	q21.2	F: 5'-TGGGTAAAGAAATGTGCTCTC-3' R: 5'-GGAATCATGCAGTGCTTGTAGT-3'	^a R: 5'-GTTCAATGGTGTCACAAAGGAT-3'	103	FAM
	D21S1914	q21.2	F: 5'-AGATTACATTGGGCCTTCTGTC-3' R: 5'-ATCTGAACCAGGGCATGTAAAC-3'	^a R: 5'-GGAGCCTTACAAAAGATTTGGA-3'	178	TAMRA
	D21S1413	q22.11	F: 5'-CTCTTAAATTGGAAGCATGCAG-3' R: 5'-CCCGGAAGTTTTATACCAAAAG-3'	F: 5'-ATACATAAAGCTGCCAGCGTTG-3' ^a	184	TAMRA
	D21S1444	q22.13	F: 5'-ACAACACCCTTATCAACCTGC-3' R: 5'-GGCTTTGGATCACTCGTAACT-3'	F: 5'-TTAGAGCTTCCTTTGCCATCT-3' ^a	242	FAM
	D21S1245	q22.2	F: 5'-TGAAAAACAGAGAAGGAGGAA-3' R: 5'-TTGTTGAGGATTTTTGCATCAG-3'	F: 5'-ACCAAAACCAGAAAATGACACA-3' ^a	274	HEX
	D21S1412	q22.2	F: 5'-GGAAGGAATTCACTCTACCACTACA-3' R: 5'-AGTGAGTTGAGATCGCACCACT-3'	F: 5'-AGTGAGTTGAGATCGCACCATT-3' ^a	283	FAM
	D21S2055	q22.2	F: 5'-ATTCTGGTCCTTTGAGGTAACTG-3' R: 5'-CATCCTCCATAATAGCATGAGCT-3'	F: 5'-CAGAGAAACAGAACCAATAGGCT-3' ^a	165	FAM
	D21S1411	q22.3	F: 5'-ATATGATGAATGCATAGATGGA-3' R: 5'-CCCAGAAAACAACTCAGTTAATA-3'	^a R: 5'-TTGTATTAATGTGTGTCCTTCC-3'	240	TAMRA

 $\textit{Note:} \ F = Forward; \ R = Reverse; \ STR = short \ tandem \ repeat; \ PCR = polymerase \ chain \ reaction.$

^a A heminested approach was used.

FIGURE 1 Continued


Capillary electrophoresis of fluorescent polymerase chain reaction (PCR) products obtained from a preimplantation genetic diagnosis case for Robertsonian translocation (13;14), after multiplex amplification of a set of polymorphic short tandem repeat (STR) markers located along chromosome 14. The x-axis shows the length of PCR products in base pair and the y-axis shows the fluorescence intensity in relative fluorescence units. On top of the electropherogram the marker name is located above the corresponding alleles (peaks). A normal diploid embryo (**C**) has the normal complement of each parental chromosome, thus two alleles of a chromosome-specific STR are determined as two peaks. Embryos with a normal copy number for a given chromosome will show a heterozygous pattern for all the STRs used. The observation of an extra STR allele as a three peak pattern is diagnostic of the presence of an additional sequence, which represents an additional chromosome, as in the case of a trisomy. Trisomic embryos will produce trisomic patterns for all markers on the same chromosome (**B**). The observation of only one STR allele as a one peak pattern is diagnostic of the missing of the sequence from one chromosome, as in the case of a monosomy. Monosomic embryos will show a homozygote pattern for all the STRs used for a given chromosome (**A**).

was indicated because of advanced maternal age (average 40.9 ± 2.2 years; range 37.4–45 years). For couple 18, despite the patient's low reproductive age (32 years), PGS was performed because a previous PGD+PGS cycle resulted in a diagnosis of aneuploid embryos; for couples 11 and 23, instead, PGS was included because of their reproductive history. For couple 16, analysis of chromosome 21 only was included to reduce the risk of a pregnancy with Down syndrome. In total, 90 embryos were tested for aneuploidy along with the chromosome rearrangement, 84 (93.3%) of which were successfully diagnosed. Amplification failed for all the markers tested in six embryos. A total of 53 (63.1%) embryos were found to be aneuploid; in 54 (69.6%) embryos aneuploidies were of maternal origin and 24 (30.4%) were of paternal origin. Five embryos (9.4%) had a combination of aneuploidies from both maternal and paternal origin.

Embryos suitable for transfer at the blastocyst stage were identified in 24 of the 27 cycles (88.9%). In three PGD cycles (couples 10, 14, and 16), embryo transfer was canceled because the morphology of the embryos was not sufficient for transfer. After transfer of 52 embryos (mean 1.7 ± 0.9 , range 1-3), 18 women (mean age 35.1 \pm 4.3 years, range 29.0–41.9 years) had positive hCG levels (75.0% PR per embryo transfer). All pregnancies continued on to confirm at least one fetal sac and heart beat. A total of 31 embryos implanted and led to the presence of a fetal sac (59.6% implantation rate), resulting in 29 fetuses with a heart beat detected (55.8% fetal heart beat/embryo transferred). Prenatal diagnosis was performed in two pregnancies and both were confirmed to be karyotypically balanced. All pregnancies (1 triplet, 4 twins, and 13 singleton) have completed at least 12 weeks of gestation. Ten patients (1 triplet, 1

FIGURE 2

Uniparental disomy (UPD) detection on embryos from a preimplantation genetic diagnosis case for Robertsonian translocation (13;14), by using the polymerase chain reaction (PCR)-based preimplantation genetic diagnosis protocol for detection of chromosomal imbalances. The x-axis shows the length of PCR products in base pair and the y-axis shows the fluorescence intensity in relative fluorescence units. On top of the electropherogram the marker name is located above the corresponding alleles (peaks). For the chromosome 14 STR markers, the embryo (A) inherited alleles only from one parent (B) and failed to inherit an allele from the other (C), consistent with UPD14. Highlighted in blue are maternal alleles.

Fiorentino. A PCR-based PGD protocol for chromosomal translocation. Fertil Steril 2010.

Fertility and Sterility® 2007

TABLE 4

Clinical results from 27 PGD cycles for reciprocal and Robertsonian translocations.

		Couples																											
		Robertsonian translocation Reciprocal translocation																											
Clinical data	1	2	3 4	. 5	6	7	8	9	10	11	12	13	14	15	Total	16	17	18	19	20	21	22	23	24	25	26	27	Total	Total
No. of couples treated															15													12	27
Maternal age (average; y)															37.6 ± 4.8														36.1 ± 4.4
No. of cycles performed															15													12	27
PGS (Y/N)	N	Υ	ΥΥ	/ Y	Υ			N		Υ			N	N	8		N			N		N				N		4	12 ^c
No. of oocytes retrieved	15	8	5 7	21			14		10				15		231	10							10			17		220	451
No. of mature oocytes injected (%) ^a	12	8	5 7	⁷ 18	10	9	11	16	9	14	17	25	11	20	192 (83.1)	9	12	21	8	23	9	15	8	16	16	12	10	159 (72.3)	351 (77.8)
No. of oocytes fertilized (%) ^b	7	8	5 5		. 7	7	9	12	8	10	14	23	11	19	159 (82.8)	8	10	10	5	20	8	13			15	9	8	125 (78.6)	284 (80.9)
No. of embryos thawed	0	0	3 2	2 0	8	0	0	0	0	0	0	0	0	4	17	0	0	0	2	0	0	0	3	0	0	8	7	20	37
No. of embryos survived after thawing	0	0	3 1	0	5	0	0	0	0	0	0	0	0	4	13	0	0	0	2	0	0	0	3	0	0	7	6	18	31
No. of embryos biopsied	5	8	5 4	10	6	5	8	10	8	8	13	19	8	13	130	7	10	8	7	16	5	12	8	11	12	13	12	121	251
No. of blastomeres analyzed	5	8	5 4	1 10	6	10	16	10	8	8	13	19	8	13	143	7	10	8	7	16	5	12	8	11	24	13	12	133	276
No. of blastomeres with total PCR failure	0	0	1 (0	1	0	2	0	0	0	2	1	1	0	8	0	0	2	0	1	0	0	0	0	1	1	0	5	13
No. of embryos diagnosed (%)	5	8	4 4	10	5	5	8	10	8	8	11	18	7	13	124 (95.4)	7	10	6	7	15	5	12	8	11	12	12	12	117 (96.7)	241 (96.0)
Balanced (%)	3	3	4 3	3 7	4	5	5	6	6	6	6	14	3	7	82 (66.1)	3	3	3	2	5	3	5	4	3	3	4	7	45 (38.5)	127 (52.7)
Unbalanced (%)	1	5	0 () 3	1	0	2	4	2	2	5	4	4	6	39 (31.5)	3	7	3	4	8	2	7	4	8	9	8	5	68 (58.1)	107 (44.4)
Aneuploid (%)	2	6	1 2	2 8	3	0	6	0	2	4	6	0	0	0	40 (69.0)	3	0	1	1	2	2	0	2	0	2	0	0	13 (50.0)	53 (63.1)
Balanced + aneuploid (%)	0	2	0 1	6	2	0	3	0	2	2	4	0	0	0	22 (37.9)	2	0	0	0	0	2	0	1	0	0	0	0	5 (19.2)	27 (32.1)
No. of embryos tested for PGS	0	8	5 4	10	6	0	8	0	0	8	13	0	0	0	62	7	0	8	0	0	5	0	8	0	0	0	0	28	90
No. of embryos diagnosed for PGS (%)	0	8	4 4	10	5	0	8	0	0	8	11	0	0	0	58 (93.5)	7	0	6	0	0	5	0	8	0	0	0	0	26 (92.9)	84 (93.3)
No. of aneuploid chromosomes	2	10	1 3	3 11	8	0	16	0	2	4	8	0	0	0	65 ´	3	0	1	1	2	2	0	2	0	3	0	0	14	79 ´
Trisomies (%)	0	5	0 2	2 3	1	0	1	0	0	1	5	0	0	0	18 (27.7)	2	0	1	0	0	1	0	0	0	0	0	0	4 (6.2)	22 (27.8)
Monosomies (%)	1	5	0 () 8	6	0	12	0	2	2	3	0	0	0	39 (60.0)	0	0	0	0	0	1	0	2	0	2	0	0	5 (35.7)	44 (55.7)
Haploidy (%)	1	0	1 1	0	0	0	1	0	0	0	0	0	0	0	4 (6.2)	1	0	0	1	2	0	0	0	0	0	0	0	4 (28.6)	8 (10.1)
Triploidy (%)	0	0	0 (0	0	0	0	0	0	1	0	0	0	0	1 (1.5)	0	0	0	0	0	0	0	0	0	0	0	0	0 (0)	1 (1.3)
UPD (%)	0	0	0 () (1	0	1	0	0	0	0	0	0	0	2 (3.1)	0	0	0	0	0	0	0	0	0	1	0	0	1 (7.1)	3 (3.8)
XXY	0	0	0 (0	1	0	0	0	0	0	0	0	1 (1.5)	0	0	0	0	0	0	0	0	0	0	0	0	0 (0)	1 (1.2)
Aneuploidies of maternal origin (%)	1	10	1 1	11	4	0	7	0	0	3	7	0	0	Ō	45 (69.2)	3	0	0	1	1	2	0	2	0	1	0	0	10 (71.4)	55 (69.6)
Aneuploidies of paternal origin (%)	1	0	0 2		. 4	0	9	0	2	1	1	0	0	0	20 (30.8)	0	0	1	0	1	0	0	0	0	2	0	0	4 (28.6)	24 (30.4)
No. of embryos transferable	3	1	2 2		2	5	2	6	0	3	2	11	3	3	46	1	3	3	2	5	1	5	3	2	2		5	34	80
Embryo transfer (Y/N)	γ	ν.	Y \	, v	ν_	v	ν_		N	v	v	Υ	NI	Υ	13	N.	γ	v	ν_	v	v.	γ	v	γ_	v	ν_	v	11	24
No. of embryos transferred	' 3	1	2 2	1	'2	່ 2	່ 1	2	.0	3	ع	່າ	0	З	26	.0	' 3	3	່າ	3	1	2	3	2	ع	2	3	26	52
Day of transfer	5	6	6 6		6	5	5	6	-	6	6	6	-	6	20	_	5	5	6	6	6	6	6	6	5	_	6	20	02
No. of clinical pregnancies	1	0	1 (0	1	1	1		0	1	1		1	9		1	1	0	1	1	1	0	1	1		1	9	18
No. of embryos implanted (gestational	3	0	2	. 1	-	2	1	2	_	0	1	1		2	9 15		3	1	-	2	1	2	0	2	1	2	2	9 16	31
sacs)	3	U	2	- 1	_	2	'	2	_	U	'	'	-	2	13	Ī	3	'	Ī	2	'	2	U	2	'	2	2	10	31
No. of fetal heart beats	3	0	2	- 4		2	1	2		0	1	1		2	14		2	1		1	1	2	0	2	1	2	2	15	29
	3	_	1	- I - 1	_	2	1	1	_	0	1	1	-	1	12	-	1	1	-	1	1	2	0	1	1		2	12	29 24
No. fetuses after 12 weeks of gestation	3	U	1	- 1	_	2	'	1	-	U	1	'	-	- 1		-	'	1	-	1	1	2	U	1	1	2	2		
Clinical pregnancy rate per OR															60.0%													75.0%	66.7%

Continued. Continued. Clinical data Clinical pregnancy rate per embryo transfer Implantation rate No. of pregnancies still ongoing No. of pregnancies went to term	Couples Robertsonian translocation Reciprocal translocation Reciprocal translocation Reciprocal translocation Reciprocal translocation Reciprocal translocation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total 16 17 18 19 20 21 22 23 24 25 26 27 Total Total 69.2% 81.8% 75.0% 61.5% 59.6% 10 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0
No. of babies born	301010000-011-07-110112000006 13
NPGD = preimplantation genetic diagnosis; I	NPGD = preimplantation genetic diagnosis; PGS = preimplantation genetic screening; PCR = polymerase chain reaction; OR = ; UPD = uniparental disomy; Y/N = yes/no.

Fiorentino. A PCR-based PGD protocol for chromosomal translocation. Fertil Steril 2010.

^b calculated on no. of mature oocytes injected.

only for chromosome 21

Calculated on no. of oocytes retrieved.

twin, and 8 singleton pregnancies) have delivered 13 healthy babies, and the other patients have currently ongoing pregnancies.

After the clinical cases, 33 nontransferred embryos were reanalyzed using the same PCR conditions and procedure as in the clinical PGD samples. The follow-up PCR was successful in all embryos, confirming the diagnosis in all nontransferred embryos reanalyzed.

DISCUSSION

Currently, the diagnosis of chromosomal imbalances on embryos obtained from both reciprocal and Robertsonian translocation carriers is performed using a FISH-based method (1, 2, 4). Although FISH has been applied extensively to identify structural and numerical chromosome abnormalities in embryos, several technical limitations have been described, all of which can confound diagnosis and may lead to incorrect interpretation of the results and a potentially adverse outcome (9).

A major limitation of the FISH procedure is that it is dependent on fixation of a single cell onto a microscope slide, a critical step that requires skill and experience. Suboptimal fixation (condensed nuclei, cytoplasm covering the nucleus, expanded nuclei) can produce a host of issues that are difficult to overcome. The techniques used to spread/fix nuclei on slides (20, 21) and the ability of each technologist to deliver consistent results on each embryo drives the success of the test.

Beyond the technical skill necessary to place and keep the nucleus on the slide, FISH-based tests suffer from other inherent issues that must be overcome, or at least minimized. These issues include hybridization failure (lack of FISH signals), overlapping FISH signals (two FISH signals of the same color lying in close proximity that cannot be discerned as one or two signals, or two FISH signals of different colors lying in close proximity where one signal obscures the second), and split signals (one FISH signal appearing as two due to the separation of sister chromatids).

Each of the limitations listed can lead to misdiagnosis of embryos both in eliminating embryos that could be transferred, or worse, including abnormal embryos in the transfer cohort errantly.

In the present study we have described a new approach for the detection of chromosomal imbalance in embryos derived from translocation carriers. The approach consists of a fluorescent multiplex PCR using STR markers located along the chromosomes involved in the rearrangement. Using STR markers simultaneously for each arm involved in the translocation, one can detect all abnormal segregations for any translocation.

The coamplification of at least three fully informative STR markers lying on either side of the translocation breakpoints increases the accuracy of the test. Allele dropout can lead to misdiagnosis if all markers tested are affected simultaneously. However, the use of a strategy involving at least three informative markers on each side of the breakpoints reduces this risk substantially as ADO in any one marker is not likely to be repeated in the others (Fig. 1). This series of checks and double checks increases the accuracy of the test and would only fail if ADO occurred in all markers at the same time, estimated at about a 0.002% chance per test. The multiplex STR marker system also provides an additional control for contamination with exogenous DNA, as other alleles, differing in size from those of the parents, would be detected (22). However, the approach does not discriminate between noncarrier embryos and those that carry the balanced form of the translocation.

In addition to the ability to test for virtually any chromosome translocation, additional markers can be added to the multiplex to assess common aneuploidies for patients of advanced maternal age or those who wish additional information during genetic testing.

Pregnancy outcome in translocation carriers after PGD treatment.

Reference	Cycles/couples	Maternal age (mean ±SD)	No. of clinical pregnancies	Clinical pregnancy rate/embryo transfer	Clinical pregnancy rate/OR	Implantation rate
Robertsonian translocation						
Goossens et al. (26)	1,009/NA	33.5	213	29.0	21.1	16.0%
Verpoest et al. (27)	94/54	32.2 ± 5.0	24	38.1%	25.5%	NA
Munné et al. (28)	133/88	34.0	30	42.7%	37.6	NA
Gianaroli et al. (29)	35/22	35.5 ± 3.7	13	59.1%	37.1%	44.4%
Present study	15/15	37.6 ± 4.8	9	69.2%	60.0%	57.7%
Reciprocal translocation						
Goossens et al. (26)	1,973/NA	33.0	264	22.9%	13.4%	13.1%
Verpoest et al. (27)	190/90	33.0 ± 4.5	22	23.2%	11.6%	NA
Lim et al. (30)	51/34	$\textbf{31.3} \pm \textbf{3.1}$	14	38.6%	33.3%	24%
Otani et al. (7)	36/29	32.7 ± 2.9	17	NA	47.2%	NA
Munné et al. (28)	338/239	36.1	79	34.1%	23.4%	NA
Gianaroli et al. (29)	29/24	34.0 ± 5.3	3	27.3%	10.3%	20.0%
Present study	12/12	34.4 ± 3.2	9	81.8%	75.0%	61.5%
Cumulative translocations						
Goossens et al. (26)	2,982/NA	33.2	477	25.3%	16.0%	14.2%
Verlinsky et al. (31)	469/NA	NA	123	34.6%	NA	NA
McArthur et al. (32) ^a	21/NA	NA	7	50%	NA	50%
Verlinsky et al. (6)	183/130	33.2	45	35.7%	24.6%	24.7%
Present study	27/27	36.1 ± 4.4	18	75.0%	66.7%	59.6%

 $\textit{Note:}\ \mathsf{NA} = \mathsf{not}\ \mathsf{available;}\ \mathsf{PGD} = \mathsf{preimplantation}\ \mathsf{genetic}\ \mathsf{diagnosis;}\ \mathsf{OR} = \mathsf{oocyte}\ \mathsf{retieval.}$

Fiorentino. A PCR-based PGD protocol for chromosomal translocation. Fertil Steril 2010.

Beyond the technical advantages of the described molecular-based technique lies another, perhaps more important, advantage. The system described not only diagnoses unbalanced inheritance of chromosomes in translocation carriers, it allows for tracking of inheritance of each chromosome. This tracking of parental origin allows for the diagnosis of uniparental disomy (UPD) where both chromosomes are inherited from one parent and no chromosomes are inherited from the other (Figure 2) (23, 24). The FISH-based techniques cannot discern the origin of the chromosome that can lead to chromosomally balanced embryos for transfer that suffer from UPD. Although UPD is usually a rare event, UPD14 was detected in three (3.8%) embryos that, otherwise, would have been considered for transfer, potentially leading to phenotypic consequences.

The ability of the PCR-based approach to distinguish the parental origin of inherited chromosomes offers some additional unique data for each test. For instance, in this series of cases, 11 embryos that showed an unbalanced profile for the translocated chromosome were, in the end, scored as aneuploid because the missing/extra alleles actually originated from the partners not carrying the translocation. With the FISH-based protocol, the aneuploidy would be simply scored as an unbalanced inheritance of the translocation. More interesting, the inherent ability to determine parental inheritance of either chromosome allows for the identification of the parental origin of aneuploidy. In the embryos that were tested for both the chromosome rearrangement and aneuploidy due to advanced reproductive age, 30.4% of aneuploidies were of paternal origin, and 5 embryos were carrying both paternal and maternal aneuploidies. These findings deserve further assessment and might represent an important parameter to take into consideration when choosing the kind of cells (polar bodies or blastomeres) to be tested for PGS.

The molecular-based approach carried out for this series of patients has been shown to be efficient at the single cell level. Each multiplex PCR was successfully adapted to single lymphocytes as well as to blastomeres, showing amplification and ADO rates within the expected range for single cell PCR (25). An accurate genotyping was achieved in 263/263 (100%) of the blastomeres with positive PCR and a successful diagnosis in 241 (96.0%) of the embryos analyzed.

Furthermore, the PCR-based protocol is fast (approximately 12-hour turnaround times) and fairly inexpensive to run ($\sim 80 \in$ for testing of 10 embryos + controls), compared with purchasing commercial FISH probes for each translocation. In fact, a typical FISH test costs approximately $1000 \in$ to cover probes for parental workup and 1 or 2 clinical PGD cycles of approximately 10 embryos each.

Finally, the molecular approach is also amenable to automation and allows for easy data interpretation. It may also make transport PGD easier, because placing a cell in a tube is far easier to train and monitor than teaching any of the current spreading methods.

Although these results indicate that the molecular-based procedure is reliable and suitable for routine clinical application, some limitations must be considered. Allele dropout occurrences affecting multiple markers simultaneously can potentially lead to misdiagnosis, although the estimated risk is very low ($\sim 0.002\%$). In addition, the occurrence of a contamination event with exogenous DNA, or amplification failure of all markers analyzed, may reduce the number of embryos with a conclusive diagnosis using this technique. In the current study, however, a high percentage (96.0%) of embryos was successfully diagnosed, and no contamination events were detected in blank controls. These limitations do not affect the traditional FISH-based approach and represent the main drawbacks of the described procedure.

Clinical outcomes from PGD cycles performed with the PCR-based approach were very encouraging. Eighteen of 24 patients

^a Embryo transfer at blastocyst stage.

(75.0% clinical PR/embryo transfer) with embryo transfer achieved an ongoing pregnancy (mean maternal age 36.1 ± 4.4 years). The embryo implantation rate was 59.6%. The most recent European Society of Human Reproduction and Embryology (ESHRE) PGD Consortium data collection (26) reported an ongoing PR per embryo transfer of 25.3% (mean maternal age 33.2 years) and an implantation rate of 14.2%. In addition, other studies (27-32) (Table 5) using FISH-based testing of blastomeres biopsied from cleavage-stage embryos reported an ongoing PR ranging from 22.9%-59.1% and an implantation rate ranging from 13.1%-44.4%. These values are significantly lower compared with those obtained in this study.

Although the implantation rate and PR in our series of cycles are encouraging, they cannot be attributed only to the technique being used to analyze the embryos. However, a technique that has a lower error rate should lead to more normal/balanced embryos available for transfer, which should positively impact both PR and implantation rates. Despite these considerations, this initial study of a PCR-based approach to chromosome rearrangement PGD has shown that the use of multiple STR markers

along each chromosome may lead to more embryos with a correct diagnosis and less embryos with no diagnosis, which will certainly have a positive effect on PR and implantation rates over time

In conclusion, these results demonstrate the reliability and feasibility of our PCR-based PGD protocol for detection of chromosomal imbalances. Considering the encouraging clinical outcome obtained for the first cases, this approach has the potential to represent a valuable alternative to the FISH-based PGD protocols.

Acknowledgments: The authors thank Monica Di Gregorio for technical assistance in preclinical workup of PGD cases, and Dr. Giovanni Gallo, Francesco Comodo, Filippo Ubaldi, Ernesto Falcidia, and Vincenzo Trengia, for their contribution in bringing some PGD cases to clinical application. The authors wish to thank the embryology staff at the Centre for Human Reproduction, Athens, Greece, Terpsi Vaxevanoglou, Margarita Chronopoulou, Konstantina Petroutsou, Rena Aggeli, Maria Biba, Aphrodite Katouna, and Christina Markomichali for their kind assistance in the culture of human embryos. In addition, we thank Hamilton Thorne Biosciences Inc., Beverly, MA, USA, for the donation of the ZILOS-tk laser optical system.

REFERENCES

- Scriven PN, Handyside AH, Ogilvie CM. Chromosome translocations: segregation modes and strategies for preimplantation genetic diagnosis. Prenat Diagn 1998;18:1437–49.
- Scriven PN, Flinter F, Bickerstaff H, Braude P, Ogilvie MC. Robertsonian translocations—reproductive risks and indications for preimplantation genetic diagnosis. Hum Reprod 2001;16:2267–73.
- Munné S, Morrison L, Fung J, Márquez C, Weier U, Bahçe M, et al. Spontaneous abortions are reduced after preconception diagnosis of translocations. J Assist Reprod Genet 1998:15:290–6.
- Munné S, Sandalinas M, Escudero T, Fung J, Gianaroli L, Cohen J. Outcome of preimplantation genetic diagnosis of translocations. Fertil Steril 2000;73:1209–18.
- Munné S. Preimplantation genetic diagnosis of numerical and structural chromosome abnormalities. Reprod Biomed Online 2002;4:183–96.
- Verlinsky Y, Tur-Kaspa I, Cieslak J, Bernal A, Morris R, Taranissi M, et al. Preimplantation testing for chromosomal disorders improves reproductive outcome of poor-prognosis patients. Reprod Biomed Online 2005:11:219–25.
- Otani T, Roche M, Mizuikea M, Colls P, Escudero T, Munné S. Preimplantation genetic diagnosis significantly improves the pregnancy outcome of translocation carriers with a history of recurrent miscarriage and failing to produce a live birth. Reprod Biomed Online 2006;13:879–94.
- Conn CM, Harper JC, Winston RML, Delhanty JDA. Infertile couples with Robertsonian translocations: preimplantation genetic analysis of embryos reveals chaotic cleavage divisions. Hum Genet 1998;102:117–23.
- Wilton L, Thornhill A, Traeger-Synodinos J, Sermon KD, Harper JC. The causes of misdiagnosis and adverse outcomes in PGD. Hum Reprod 2009;24:1221–8.
- Colls P, Escudero T, Cekleniak N, Sadowy S, Cohen J, Munné S. Increased efficiency of preimplantation genetic diagnosis for infertility using "no result rescue." Fertil Steril 2007:88:53–61.
- Cohen J, Wells D, Munné S. Removal of 2 cells from cleavage stage embryos is likely to reduce the efficacy of chromosomal tests that are used to enhance implantation rates. Fertil Steril 2007;87:496–503.
- Goossens V, De Rycke M, De Vos A, Staessen C, Michiels A, Verpoest W, et al. Diagnostic efficiency,

- embryonic development and clinical outcome after the biopsy of one or two blastomeres for preimplantation genetic diagnosis. Hum Reprod 2008;23:481–92.
- Velilla E, Escudero T, Munné S. Blastomere fixation techniques and risk of misdiagnosis for preimplantation genetic diagnosis of aneuploidy. Reprod Biomed Online 2002;4:210–7.
- 14. Colls P, Sandalinas M, Pagidas K, Munné S. PGD analysis for aneuploidy in a patient heterozygous for a polymorphism of chromosome 16 (16qh-). Prenat Diagn 2004;24:741–4.
- Li M, Marin DeUgarte C, Surry M, Danzer H, DeCherney A, Hill DL. Fluorescence in situ hybridization reanalysis of day-6 human blastocysts diagnosed with aneuploidy on day 3. Fertil Steril 2005;84:1395–400.
- Fiorentino F, Magli MC, Podini D, Ferraretti AP, Nuccitelli A, Vitale N, et al. The minisequencing method: an alternative strategy for preimplantation genetic diagnosis of single gene disorders. Mol Hum Reprod 2003;9:399–410.
- Litt M, Hauge X, Sharma V. Shadow bands seen when typing polymorphic dinucleotide repeats: some causes and cures. Biotechniques 1993;15:280–4.
- Kokkali G, Traeger-Synodinos J, Vrettou C, Stavrou D, Jones GM, Cram DS, et al. Blastocyst biopsy versus cleavage stage biopsy and blastocyst transfer for preimplanation genetic diagnosis of beta-thalassaemia: a pilot study. Hum Reprod 2007;22:1443–9.
- Zegers-Hochschild F, Nygren K-G, Adamson GD, de Mouzon J, Lancaster P, Mansour R, et al. on behalf of The International Committee Monitoring Assisted Reproductive Technologies. The ICMART glossary on ART terminology. Hum Reprod 2006;21:1968–70.
- Coonen E, Dumoulin JCM, Ramaekers FCS, Hopman AHN. Optimal preparation of preimplantation embryo interphase nuclei by fluorescent in situ hybridisation. Hum Reprod 1994;9:533–7.
- Tarkowski AK. An air-drying method for chromosome preparations from mouse eggs. Cytogenetics 1966;5:394–400.
- Fiorentino F, Biricik A, Nuccitelli A, De Palma R, Kahraman S, Iacobelli M, et al. Strategies and clinical outcome of 250 cycles of Preimplantation Genetic Diagnosis for single gene disorders. Hum Reprod 2006;21:670–84.

- Kuwano A, Mutirangura A, Dittrich B, Buiting K, Horsthemke B, Saitoh S, et al. Molecular dissection of the Prader-Willi/Angelman syndrome region (15q11-13) by YAC cloning and FISH analysis. Hum Mol Genet 1992;1:417–25.
- Tomkins DJ, Roux AF, Wayne J, Freeman VCP, Cox DW, Whelan DT. Maternal uniparental isodisomy of human chromosome 14 associated with paternal t(13q14q) and precocious puberty. Eur J Hum Genet 1996;4:153–9.
- Thornhill AR, de Die-Smulders CE, Geraedts JP, Harper JC, Harton GL, Lavery SA, et al. ESHRE PGD Consortium "Best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS).". Hum Reprod 2005;20:35–48.
- Goossens V, Harton G, Moutou C, Traeger-Synodinos J, Van Rij M, Harper JC. ESHRE PGD Consortium data collection IX: cycles from January to December 2006 with pregnancy follow-up to October 2007. Hum Reprod 2009;(24): 1786 810
- Verpoest W, Haentjens P, De Rycke M, Staessen C, Sermon K, Bonduelle M, et al. Cumulative reproductive outcome after preimplantation genetic diagnosis: a report on 1498 couples. Hum Reprod 2009;24: 2951–9.
- Munné S. Preimplantation genetic diagnosis for translocations. Hum Reprod 2006;21:839

 –40.
- Gianaroli L, Magli MC, Fiorentino F, Baldi M, Ferraretti AP. Clinical value of preimplantation genetic diagnosis. Placenta 2003;24(Suppl B): S77–83.
- Lim CK, Cho JW, Song IO, Kang IS, Yoon YD, Jun JH. Estimation of chromosomal imbalances in preimplantation embryos from preimplantation genetic diagnosis cycles of reciprocal translocations with or without acrocentric chromosomes. Fertil Steril 2008;90:2144–51.
- Verlinsky Y, Cohen J, Munné S, Gianaroli L, Simpson JL, Ferraretti AP, et al. Over a decade of experience with preimplantation genetic diagnosis. Fertil Steril 2004;82:302–3.
- McArthur SJ, Leigh D, Marshall JT, de Boer KA, Jansen RP. Pregnancies and live births after trophectoderm biopsy and preimplantation genetic testing of human blastocysts. Fertil Steril 2005;84: 1628–36

Fertility and Sterility® 2011

TABLE 3

Oligonucleotide primer sequences for amplification of STR markers used for detection of chromosomal imbalances on embryos derived from reciprocal translocation carriers.

Chromosome	STR markers	Chromosomal band	Outer primers (5' to 3')	Inner primers (5' to 3')	PCR product size	Dye labe
1	D1S1612	p36.23	F: 5'-ATAGAGGATGGCTCTCTGCCAC-3' R: 5'-GGCAACAAGAGCAAAAATCTGT-3'	F: 5'- GTCCCATGCCAAAATTCTTAGG-3' ^a	176	HEX
	D1S1160	p36.23	F: 5'-ACCAGTCAATAGCAAGCTGAGG-3' R: 5'-TGGCAAGTTCGTAAATGCTAGT-3'	^a R: 5'- CCTTTATTGCCCACCTTACAGA-3'	164	TAMRA
	D1S1151	p36.22	F: 5'-TTCCAAGCAGTGCTGTTTCATT-3' R: 5'-GGGTGACAGAGCAAGACTCTGT-3'	F: 5'- GATTCCTGCTCTGATAATCCCC-3' ^a	252	TAMRA
	D1S1598	p34.2	F: 5'-ACCAAGGGACCTAGAAACTCATTA-3' R: 5'-CAAAGGCAGTCTTTTAGAAGGACT-3'	^a R: 5'- GGACTGAGACTTACAAGAGGCTAAA-3'	132	HEX
	D1S394	q22	F: 5'-GTAAATTGCCCAGTTTCACATG-3' R: 5'-CCTTACCTCTAACACTGGAAATCA-3'	F: 5'- ACTTATAAAGAGACCCTGCCTGA-3' ^a	189	FAM
	D1S1609	q41	F: 5'-CTGACTTGGTACAAACCCACAA-3' R: 5'-TGATTCTAGGTTGGTCACTCGA-3'	^a R: 5'- GGGAGAAATTCTATGTGCCACT-3'	206	FAM
2	D2S1275	p25.1	F: 5'-TCCTTGTAAATCTCAGATCCCC-3' R: 5'-TTGCTGCTGGCCTAATTGTTAT-3'	^a R: 5'- CATCCTCGACTTCTCTGCTTTT-3'	201	HEX
	D2S262	p25.1	F: 5'-CCAGAGACCTTTGTTCACTTGTT-3' R: 5'-GCTAGGATGCAGAGATGTGGTA-3'	F: 5'- CCCTCCACTGTTGTCCTATGAC-3' ^a	201	FAM
	D2S272	p24.2	F: 5'-GGCCTCTCCAAGCACTAGATC-3' R: 5'-GAAAACAATAGTCTGGCTTGGG-3'	F: 5'- AGGTTGAAGAACAGGGTTTTGA-3' ^a	216	TAMRA
	D2S1360	p24.2	F: 5'-GCCTTTGGACTAGGACTGAATTAT-3' R: 5'-GGCATATACAAAACAGAAACAGAAC-3'	F: 5'- TATAACCTTGTGAGCCAATTCCTAT-3' ^a	157	FAM
	D2S150	q22.1	F: 5'-ATCACCTCATTCTTCCTCTC-3' R: 5'-GTAGGATTTGTGTAAGAAGGCA-3'	^a R: 5'- GGGCTCAAAGATCTAAAGTCTT-3'	179	FAM
	D2S434	q35	F: 5'-CCATCTGTACTGTTCCCAGAAA-3' R: 5'-TATGGATGTGGAAATCATAGCC-3'	F: 5'- GTGGGATACCTGGAGAAGACTC-3' ^a	132	FAM
	D2S1338	q35	F: 5'-AGGTGGCCCATAATCATGAGTT-3' R: 5'-ATTCCTACTGGCCCATAATCCA-3'	^a R: 5'- CCAGTGGATTTGGAAACAGAAA-3'	174	FAM
	D2S1363	q36.3	F: 5'-TCTGCTTTCTCTGACTGTATCATG-3' R: 5'-CTTTTATTCTTTGTCTCCCCAGTT-3'	^a R: 5'- GCTACTTCACTCCATCATTTGCT-3'	169	HEX
3	D3S1767	p21.31	F: 5'-GGGTGACAGAGAATCCATCTCT-3' R: 5'-CCTTTGAGATAATGGCAAAGTG-3'	F: 5'- GGCTTGAGTGATGGGAATTTAT-3' ^a	199	FAM
	D3S2456	p21.31	F: 5'-AGTCCAGGAGTTCAAGACCAG-3' R: 5'-GATATCCAGTTTTCCCAGCTCT-3'	F: 5'- ATACACAAAATTGGCTGGTGTG-3' ^a	209	HEX
	D3S1581	p21.31	F: 5'-ATGTGGTGGCCAGTTCTCAAAG-3' R: 5'-TATGTGCTCCAGGCTGGGTAAC-3'	F: 5'- GTCCTGACAGAACTGCCAAACC-3' ^a	114	FAM
	D3S2329	p14.1	F: 5'-AAGAGTATTCCATAGCGTGTGT-3' R: 5'-ACCATTTGCTAGACAAGGTCTA-3'	^a R: 5'- ATGTGCTCAAATACTGTGTGTG-3'	244	FAM
	D3S3041	q26.32	F: 5'-ATCTCTATCAGGCAGGGCTCTC-3' R: 5'-AGCCACCCCTGTCAGATTTTAG-3'	^a R: 5'- TCACCAGACTTCCACAATCACA-3'	168	FAM
	D3S2427	q26.32	F: 5'-ATTCGTCTCTCTTGCTCCACTG-3' R: 5'-GTGACCTGCACTCAGCAGATCT-3'	^a R: 5'- CTGCCTCATCTCTTCAGGATGT-3'	186	HEX

Continued.

Chromosome	STR markers	Chromosomal band	Outer primers (5' to 3')	Inner primers (5' to 3')	PCR product size	Dye labe
	D3S1754	q26.32	F: 5'-GCTTAAAGTGTTTTTTTGAGACA-3' R: 5'-CGCTATTTGGTCTTTAACTGTTA-3'	F: 5'- ACTTTTTAATACGCTTTTAAGGG-3' ^a	182	TAMRA
	D3S2398	q28	F: 5'-ATTGTAGTGAGCCAAGATCGTG-3' R: 5'-CCCTAGAAAATAGCATCAGGGA-3'	F: 5'- CTTGGGTGACAGAGTAAGACCC-3'a	102	HEX
5	D5S2505	p15.32	F: 5'-CTTCTCAGCCTCTGTAATTGCA-3' R: 5'-ACACATGCTGTGTCTCTCAACA-3'	F: 5'- TGAGCCAATTCCCTTAGTAAGC-3' ^a	252	TAMRA
	D5S580	p15.32	F: 5'-TTGTGCCACTGCATTCTAGC-3' R: 5'-CATTTGCCTGCTGATTTAAAAG-3'	F: 5'- ACAGAGCCAGACCCTGTCAA-3' ^a	254	HEX
	D5S807	p15.2	F: 5'-CAGGAAACAGAGAAAATATACTGG-3' R: 5'-AAGTTCTTTTCCTGAGGTTTCTAC-3'	F: 5'- TGAGTAAATTCACACAGCCAGTA-3' ^a	236	FAM
	D5S1486	p15.2	F: 5'-GGCTTAAGGTCAGGAGTTGGAG-3' R: 5'-TGCTCACACTTCAACAAAGCAA-3'	F: 5'- TAGCCTGGGCAACATAGTGAGA-3' ^a	170	HEX
	D5S1465	q34	F: 5'-GGTTCTTCAAATGACCCAGTTT-3' R: 5'-ATCCTTCTCTCTACTCCCAC-3'	F: 5'- AATGACTAAATTTGGACCCTGC-3' ^a	204	HEX
	D5S1349	q35.1	F: 5'-TATCGTGTGTTATTGCTGCTTG-3' R: 5'-GCATCTACATTTTTGGCAACTC-3'	F: 5'- CTGACACATAGTTGGCACTCAA-3' ^a	283	FAM
	D5S1456	q35.1	F: 5'-CCATGTGAACCAATTCTTGAAAG-3' R: 5'-ATTGTAACCCCGTTGTAGGTCA-3'	F: 5'- TCTCTGGAAAACCCTAATTCTCC-3' ^a	190	FAM
	D5S614	q35.2	F: 5'-CACTGGCATGGCTTTGGTTAAT-3' R: 5'-ATCACACAGCTGCCAAGAGACA-3'	^a R: 5'- ATCTGTGTGGCTTCTGAATTGC-3'	156	TAMRA
6	D6S477	p25.1	F: 5'-ATAGATGGCTTCCTAGGCTCAA-3' R: 5'-GGACTTCAAAGACAAAAGAGGG-3'	F: 5'- TTTACTTCTGTCACAGGGCTGA-3'a	219	HEX
	D6S399	p24.1	F: 5'-GTGAGACATGATTGCACCACTG-3' R: 5'-GAGCTTGCTGTGAGCATTTACC-3'	^a R: 5'- GTAACAAATGGTGACCTGCAGC-3'	288	HEX
	D6S1279	p24.1	F: 5'-TTTAAGGAGCTACAGTGGCAGG-3' R: 5'-TCCCCAGGTAAAATGATTTGAC-3'	^a R: 5'- TCTGACAAATTGCTCCCACTTC-3'	164	TAMRA
	G15833	q24.3	F: 5'-CTCTCGGATCATCAGTTTGTGA-3' R: 5'-CTTGAATTTTTGACTGCACAGG-3'	F: 5'- TGTTCAAGGGTCAACTGTGAAT-3' ^a	209	FAM
	D6S1009	q23.3	F: 5'-GCTGTTCTCAGAGCCCTAAAAA-3' R: 5'-AGCTATGATCACAATGCTGCAC-3'	^a R: 5'- GCAACAGAGTGAAAGACCCTGT-3'	206	HEX
	D6S960	q25.1	F: 5'-GAAGATGCTGGAGCTCTAAGCC-3' R: 5'-TTAGTGTGCCTTTGACAAGCCT-3'	F: 5'- TTTTCTCCAGGTGTTTCCTGTG-3' ^a	180	HEX
7	D7S620	p21.3	F: 5'-TGTATTTGTCAGGGTTCTCCAG-3' R: 5'-CCAATTCTCCTCATAAGTCTCCTC-3'	F: 5'- CAGAGAGACACAGCCAATTAAATG-3' ^a	164	HEX
	D7S2210	p15.3	F: 5'-AGCCTCTCAAGGACTGAGAGAG-3' R: 5'-CAAATAGAAGCTCATCTGGAAGC-3'	F: 5'- AGTGAGGTGGACAAGCAGGTAG-3' ^a	218	FAM
	D7S460	p14.3	F: 5'-CTTCAGTTCCCTGTCACATTTGT-3' R: 5'-CCTAGAAAGATGGGAAACAGCTG-3'	F: 5'- GCCACAGGGTTTATGAAACTGAT-3' ^a	205	TAMRA
	D7S2847	q31.2	F: 5'-CACCTTCAGAAAGTATTGCCTA-3' R: 5'-CATAGTGAGGTGTTTCTCCAAG-3'	^a R: 5'- CAAGCTCTGTTCCTCATTAATG -3'	182	TAMRA

Continued.

Chromosome	STR markers	Chromosomal band	Outer primers (5' to 3')	Inner primers (5' to 3')	PCR product size	Dye labe
	D7S1805	q35	F: 5'-AAAGTGCTGGGATTACAGACAT-3' R: 5'-CCCACTTCTCTGCTATTACATATAT-3'	F: 5'- CTGTATCTCTCAGTTAATTCCCAG-3' ^a	182	FAM
	D7S2208	q36.1	F: 5'-ATGCCTTTACCCACCCCTCTA-3' R: 5'-GGGAAAGAAGATACAGGTGGAAT-3'	F: 5'- AATCAGTATGCCTGTATCCACCA-3' ^a	248	TAMRA
	D7S1823	q36.1	F: 5'-AGTGGCTTCTATTTCTCTCCAAGT-3' R: 5'-AGATCCTCGTATGGGAGTGACC-3'	F: 5'- TCCTACAGTGGACTCAGAAGCC-3' ^a	200	HEX
8	D8S492	p22	F: 5'-CAGACAGTTGCTGCTAACCC-3' R: 5'-GCAAGTAGGCCTGTTTCATG-3'	^a R: 5'- TTGGCTGGTTAGTGACACAGA-3'	162	FAM
	D8S1477	p12	F: 5'-AGAGGGTTTCGCCAAAAGATT-3' R: 5'-CTGAGCCTTCCTGTCCTCTAAT-3'	F: 5'- ATGAGCAAACTTCATCCACTTG-3' ^a	180	HEX
	D8S532	p11.21	F: 5'-GCTCAAAGCCTCCAATGACTGT-3' R: 5'-GCAACCAGAATGGACTAGGACA-3'	F: 5'- GTAATTATGCAAGGCCCACATG-3' ^a	165	TAMRA
	D8S2317	p11.21	F: 5'-TGATGGGAATGAGAGAATCTCA-3' R: 5'-CCCCAGGAAGTATACCATTCAA-3'	F: 5'- CAGAACTGGCTCTTCAATGACA-3' ^a	208	HEX
	D8S1104	p11.21	F: 5'-CAGCTATGAGAAAAGTTGAATGGT-3' R: 5'-GGAGGTATATTTTGACCCTTGTTT-3'	^a R: 5'- TGTACGGTATGCATCAGAGGTTT-3'	115	HEX
	D8S592	q24.11	F: 5'-TTGCCTTAGGTGGACTGAATATA-3' R: 5'-TCAGTGTTTCCACAGGATAGATG-3'	F: 5'- GTTGGCTAATGTTCCTGTCTTCT-3' ^a	173	HEX
	D8S586	q24.12	F: 5'-GAAGGAGGGCTAAAATAAACCC-3' R: 5'-GGGTACTAGCTGTGCCTATTGC-3'	^a R: 5'- TGCTTCTGGAGTGTCATACCAT-3'	265	FAM
9	D9S254	p23	F: 5'-CTGCTTCTGCTTCACTCAAAGAT-3' R: 5'-GGATAAACCTGCTTCACTCAAAG-3'	F: 5'- GTAATAACTGCCGGAGAGATGG-3' ^a	112	TAMRA
	D9S746	p21.2	F: 5'-TTCACTACAACAACTGCTGTCACTC-3' R: 5'-ACAGCGAGACTCCATCTCAAAAAT-3'	F: 5'- CTCACTGATTCACAAAAAATTGGGT-3' ^a	215	FAM
	D9S251	p21.1	F: 5'-GTAGGCAAAACTAACCCTTTTGTAG-3' R: 5'-TCCAGCTTGCTCTATTTCAGACT-3'	F: 5'- GAAATTTTGACTGGAAAGTGCC-3' ^a	255	HEX
	D9S752	q34.11	F: 5'-GAGGCAGGAGAATCACTTGAAT-3' R: 5'-TCAGGCCATTATACTCATTGGA-3'	F: 5'- GTTGCAGTGAGCTAAGATCACG-3' ^a	169	FAM
	D9S766	q34.11	F: 5'-TGCTTGACCTCAGGAAGTGG-3' R: 5'-CCACACCGCCTCTATTCATC-3'	F: 5'- GAGCCAAGATTGCACCACTG-3' ^a	208	HEX
	D9S1830	q34.13	F: 5'-CCATTCCTAACCTCCAGAGTGG-3' R: 5'-GACTGCCTTCCTCATGCCTG-3'	F: 5'- TGGGACTCAATCCCAAGTGG-3' ^a	94	FAM
10	D10S2483	p15.3	F: 5'-TCTCCACCCACATAACACAGAC-3' R: 5'-GTAATTGCAGGTTTTGCAATTG-3'	^a R: 5'- TGGCAGAAACCACAATTACTTT-3'	122	TAMRA
	D10S1435	p15.3	F: 5'-GCCCTCGAAGAGGTTCTAGAGT-3' R: 5'-GCCAGACCCTGTCTCAAAAATA-3'	F: 5'- CTTGTGTGGTGCTGTTTGTT-3' ^a	133	FAM
	D10S526	p15.3	F: 5'-CACTAGCCAGGGTTCTCCAGAG-3' R: 5'-TGGACGCTGAACTGATGAGTGT-3'	^a R: 5'- ACCCAAATCCCAAGTGAACATC-3'	281	HEX
	D10S1237	q25.3	F: 5'-ACTCTCTTAGGTTTCTAGCTTGC-3' R: 5'-TCTGTACTAGTCAGGTTCTCCAG-3'	F: 5'- GCCTCTATAATTGTGTGAGTCAT-3' ^a	222	TAMRA
	D10S1213	q26.13	F: 5'-ATGAAGAGACCAGGCCAGTGTC-3' R: 5'-CTGTAGTGAGCGGAGATCATGC-3'	^a R: 5'- GCCTGGGCAATAAGAGTGAAAC-3'	252	FAM

Continued.

Chromosome	STR markers	Chromosomal band	Outer primers (5' to 3')	Inner primers (5' to 3')	PCR product size	Dye labe
	D10S1248	q26.3	F: 5'-AATAAGTGCAGTGCTTGGCAAA-3'	F: 5'- CTCTGTATCCCACCCCTGGATA-3'a	238	HEX
			R: 5'-AAAGCAAACCTGAGCATTAGCC-3'			
11	D11S1984	p15.5	F: 5'-GGGTGACAGAGCAAAATTCTGT-3'	^a R: 5'- GCCTCCAGACCTTGTAGAGACA-3'	160	HEX
			R: 5'-GCCTACACCTGGATCTTGGACT-3'			
	D11S1997	p15.4	F: 5'-TTCCTAAGAAAGATAAAGCACCAG-3'	^a R: 5'- CAATTGACAGTGGATTTTTGAC-3'	143	FAM
			R: 5'-GGACAAAATAAAGACCAGCTTTAC-3'			
	D11S1999	p15.4	F: 5'-GACTCACAGTTCTACATGGCTGG-3'	F: 5'- AGTCATGTCTTACATGGCAGCAG-3' ^a	133	TAMRA
	5		R: 5'-GGAACTGGAGTAAACAAGATTGC-3'	/	.=-	
	D11S1981	p15.1	F: 5'-ACCTCGGCCTCTCAAAGTACTG-3'	F: 5'- ACTGCACCCGGTCACTAAAAAA-3' ^a	176	TAMRA
	5		R: 5'-CTTTCCCAGACAGAGCTCAGGA-3'	35 -/ 00001		
	D11S1978	p11.2	F: 5'-GACAGATGAATGGATAAAGGCA-3'	^a R: 5'- GCCTTCCAGGTTCATTCATATT-3'	209	HEX
	D1100010	44.0	R: 5'-ATCTGCACTCCACAAATACACAC-3'	8F 5/ 044T044T40400044T0T0404T6/	405	
	D11S2016	p11.2	F: 5'-TGTTGGATGAAGTAATACTGGTGA-3'	^a F: 5'- GAATGAATAGAGGCAATGTGACAT-3'	185	FAM
	D1100170	00.0	R: 5'-CCATATGAACTGCAGCATTATTC-3'	F. F/ COCTACCOAATACACCAACACC	4.47	LIEV
	D11S2179	q22.3	F: 5'-CTGAAGTGGGAGGATTGTTTGA-3' R: 5'-GCACTGGAATACGATTCTAGCAC-3'	F: 5'- GCCTAGGCAATACAGCAAGACC-3' ^a	147	HEX
	D11S1304	g25	F: 5'-TCCTTCACAGGGTTCATTTTTC-3'	F: 5'- GGCATTTGGCTTTTTCAGATTA-3'a	175	HEX
	D1131304	425	R: 5'-CTGCTAAAAGACTGTGGGAACA-3'	F. 5 - GGCATTIGGCTTTTCAGATTA-5	175	ПЕХ
12	D12S372	p13.32	F: 5'-GTAGAATAAATCCCTGCATGGC-3'	F: 5'- GTGGACCACAGGGTATCATCTA-3'a	193	HEX
12	D120012	p10.02	R: 5'-ACTCTCCAATGGAAAGAAATGG-3'	1.3-4144400404444171041014-3	190	TILA
	D12S391	p13.2	F: 5'-GAATCAACAGGATCAATGGATG-3'	^a R: 5'-TTCAGCCTCCATATCACTTGAG-3'	156	FAM
	D120001	P10.2	R: 5'-TGCAGATGGACTGTCATGAGAT-3'	Ti. o Tronacorcomintronorrana c	100	17 (14)
	D12S373	p12.3	F: 5'-ACCAAGTTGCAGAGCTACTCTAGG-3'	F: 5'- TAGAGAAAGGCAGACAGATAGGTG-3'a	196	FAM
	2.200.0	p	R: 5'-CACTAGATGTTTTCAAGGCTCACA-3'			
	D12S1066	p12.1	F: 5'-TGACGTTTATTGGCCACTTGTA-3'	F: 5'- AAATGTCTGCTCAGGACCTGAG-3'a	176	TAMRA
		P	R: 5'-TGTGGGACCTTGTGATTGTGTA-3'			
	D12S395	q24.23	F: 5'-CCATTTCCGTCAGTGAACATCT-3'	F: 5'- TACCTCGATGTAATGCACGTGT-3'a	129	TAMRA
		•	R: 5'-CCAACAATGGGCAATAACTTCT-3'			
	D12S378	g24.31	F: 5'-CTTGGCCCTGATTGATTTTTTG-3'	^a R: 5'- GGACCCACCTCATGACCTTATC-3'	259	FAM
		·	R: 5'-AGGACACCAGCCATACTGGATC-3'			
	D12S2078	q24.32	F: 5'-CACAATTTCACGTACTTGGCAA-3'	F: 5'- GCTGAGAACTGGAACCATCAAT-3'	173	HEX
			R: 5'- CCCCATCCTTCTTTTATGACA-3'	a		
15	D15S817	q11.2	F: 5'-AGACTATGGTACCCAACAAGCA-3'	F: 5'- CATGTGATTCAGTTCCCCTAAA-3'a	119	FAM
			R: 5'-TAGTCAGGGTTATCGAGAGCAA-3'			
	D15S1365	q12	F: 5'-ACAAAAATTAGCCTGACGTGGT-3'	F: 5'- CAGAGTGAGACACTCTTGGGAAA-3'a	256	HEX
			R: 5'-CATTTATTGTCTCTATGGGCAGC-3'			
	D15S822	q12	F: 5'- AACTGTATCCAGCATGAATCTCTG-3'	F: 5'- TTCTCTTTCTCACCTCTCCTTCTG-3'a	185	FAM
			R: 5'- AATGAAGGAAAGTCAACAGTCTCA-3'			
	D15S192	q24.1	F: 5'-AATTGCAGTGAGCCAAGAT-3'	F: 5'- AACAAGAGCAAGACTCCGAG-3' ^a	253	FAM
			R: 5'-TTCTGCACATAGTCTGCATC-3'	2		
	D15S526	q26.1	F: 5'-AGCCACTGAACTTTTGGCTAGG-3'	^a R: 5'- TTATCATGGCACTGCACTCCAG-3'	244	TAMRA
			R: 5'-CATGAGACTGAGGCAGGAGGAT-3'			

Continued.

Chromosome	STR markers	Chromosomal band	Outer primers (5' to 3')	Inner primers (5' to 3')	PCR product size	Dye labe
	D15S230	q26.2	F: 5'-CTGTCTAGAGTTTTTAGCCTGTCG-3' R: 5'-CCAGAAAATACAGAACCAGTAAGG-3'	F: 5'- TTTAAGATTTACCTAGCCAAACCC-3' ^a	188	TAMRA
	D15S642	q26.3	F: 5'-AGGATCACTTGAGGTCAGGAGTTT-3' R: 5'-ACTAATGCTTTCAGGAATGTGAGG-3'	F: 5'- TAATCTCAGTTACCCAGGAAGCTG-3'	189	FAM
18	D18S391	p11.31	F: 5'-TCATGAGGTGGACTTACCACAG-3' R: 5'-CCCATCTGAGTCACTCAGCTAA-3'	F: 5'- GCAATGTGACTTGAGGAAGAGA-3' ^a	133	FAM
	D18S976	p11.31	F: 5'-TCCTTAGCAAGAAACTCCCTGA-3' R: 5'-GGACTTCTCTGCTGCCATAATC-3'	^a R: 5'- ACCAATTCCCCTAATAAATGCC-3'	166	HEX
	D18S542	p11.21	F: 5'-TCTGTTTCCAGTGGAAACCAAA-3' R: 5'-GGAGGGTCTTGGAACAAATTCT-3'	^a R: 5'- CCAGCAACAACAAGAGACAGCT-3'	199	FAM
	D18S1371	q23	F: 5'-TCTCTCTTCATCCACCATTGGT-3' R: 5'- AGCAGGTACAGACGTGAAAAGG-3'	^a R: 5'- GCTGTCAGAGACCTGTGTTGTG-3'	145	TAMRA
	D18S821	q23	F: 5'- CTCTAGAGGATCCGAATTATTATA-3' R: 5'- TGTAAAGTGCCTCATCATTTAT-3'	^a R: 5'- TAGATTTCTGCTTGTCATTTTC-3'	165	FAM
	MBP	q23	F: 5'-CCCACTAGAATGTAGGTTTC-3' R: 5'-ATTTACCTACCTGTTCATCC-3'	F: 5'- GGACCTCGTGAATTACAATC-3' ^a	141	HEX
	D18S70	q23	F: 5'-TACTGGTGCCCCATAGAGAGAC-3' R: 5'-CCTCTCTCCCAGAAAGATCTCC-3'	F: 5'- CACACACAATGTTTTGGGAATG-3' ^a	109	FAM
19	D19S403	p13.2	F: 5'-CGGGAAGTCTAGGCTACAGAGA-3' R: 5'-ATAGCCATCCTTCCCAGTAGCT-3'	F: 5'- TAGTGCCATTGGATTTCAACCT-3' ^a	223	HEX
	D19S581	p13.2	F: 5'-CCAGACAGAAGTGTTTACTATTATGG-3' R: 5'-CTAGGAGGTCGAGACTACAGTGAG-3'	F: 5'- TTACTATTATGGGTGTCTTCCTGAC-3' ^a	271	HEX
	D19S564	p13.13	F: 5'-GATCTTGCCATTGCACTTCAGTC-3' R: 5'- CACCAACACACCTGGCTAATTT-3'	^a R: 5'- GCCCAGGCTTCTATCTGCTTTTA-3'	212	FAM
	D19S556	p13.12	F: 5'- TTGCAGTGAGTCAATATCATGCC-3' R: 5'-GGGAGACTTTTTGGATAGAAGGG-3'	F: 5'- TTGCACTCTAGTTTGGGTGACAG-3' ^a	300	TAMRA
	D19S543	q13.32	F: 5'- TCTTTCCTTCTGAGGGTCCCTT-3' R: 5'-ACACTAAGCCAGGGAGGTTGAG-3'	F: 5'- AGATGTCCACTTCCACTGGTCC-3' ^a	245	FAM
	D19S562	q13.32	F: 5'- GAGTTTGCAGTGAGCCAAGAT-3' R: 5'-TCCACAGGGCAACCTATTATAA-3'	F: 5'- CTGGGTGACAGAGTGATATTCTG-3' ^a	234	TAMRA
	D19S553	q13.33	F: 5'- AACCTGGACAAATGCCAGAAAG-3' R: 5'-CCACTGCACTCCAGATTAGGCT-3'	F: 5'- CTTTTGACAAAATCCCCCTTGA-3' ^a	339	HEX
	D19S402	q13.33	F: 5'- CAGAATTTCAAAAGCAGCCTG-3' R: 5'-TGGGTTTCTTCTCTTGGCTAAG-3'	F: 5'- AGGGAGACCCTGTCTCTACACA-3' ^a	295	FAM
22	D22S689	q12.3	F: 5'- CAGGAAGTCAAGGCTGTAGGG-3' R: 5'- ACCTGCAACTTGCTTTTCTGC-3'	F: 5'- AGACCCCATCTCAATCTGCCT-3' ^a	233	FAM
	D22S691	q12.3	F: 5'- GAGCCTCTTCTGCAAAATGAGA-3' R: 5'- TGTGATTCAATTAACCAGGCCT-3'	F: 5'- CATCAACCACACAGGGATGTTAT-3' ^a	169	FAM
	D22S685	q12.3	F: 5'- TCTCTTACAGGGCAGTTGTTTA-3' R: 5'- GGGAAAGAAAGGAAATAGGTTC-3'	F: 5'- AGGGATCCTAGTTATCACCTACA-3' ^a	213	HEX

2011.60

TABLE 3

Continued.

	STR	Chromosomal				
Chromosome	markers	band	Outer primers (5' to 3')	Inner primers (5' to 3')	PCR product size	Dye label
	D22S534	q13.1	F: 5'- AGAGATGGAGTTTGCCGTAAGC-3' R: 5'- CAAACAGAGACATCACCCCCTT-3'	F: 5'- TGACAGGGCAAGACTCCATAATT-3' ^a	109	TAMRA
	D22S417	q13.2	F: 5'- GAGCCTGGGAAGTTAAGACTGC-3' R: 5'- CCCCACCCTCCTATCTTGATTA-3'	F: 5'- CACTTCAGCCTGTATGACACGG-3' ^a	223	HEX
	D22S526	q13.33	F: 5'- AGATCACACCACTGTACTCCAGC-3' R: 5'- TCCATTAAACCAACCTACCTACCT-3'	F: 5'- AGAGCAAGACTCTGTCTCAACAAA-3' ^a	219	FAM

Note: F = Forward; R = Reverse; STR = short tandem repeat; PCR = polymerase chain reaction.

^a A heminested approach was used.